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Abstract. This work focuses on developing a gait pathology diagnosis
system using machine learning with multimodal features. The
methodology combines inertial sensors and RGB-D cameras to
understand gait patterns and identify movement pathologies in humans.
The process begins with creating a controlled environment for data
collection, using inertial sensors placed at key body points, such as
the ankles, knees, and hips, along with strategically positioned RGB-D
cameras. Data acquisition involves recording accelerations, rotations,
images, and depth data during participants’ gait. Subsequently, this
data is preprocessed through cleaning, normalization, and noise removal,
ensuring high-quality information. Key gait features, such as phase
durations, range of motion, and oscillation frequencies, are extracted
and used to apply multimodal classification algorithms like Random
Forest, SVM, and CNN. These algorithms classify and diagnose gait
pathologies based on temporal, spatial, and frequency characteristics.
The methodology will be supported by publicly accessible databases
such as the Daphnet Freezing of Gait Dataset, GaitRec Dataset, and
Murooka Gait Dataset, which provide diverse data to validate and
improve diagnostic models.

Keywords: Gait analysis, machine learning, multimodal features.

1 Introduction

Human gait is a cyclical process that allows human locomotion, characterized
by a series of repetitive and coordinated movements of the lower limbs. Normal
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gait involves a precise sequence of biomechanical and neuromuscular events that
ensure stability, balance, and energy efficiency during locomotion.[19]. According
to Perry and Burnfield [26], gait can be defined as a dynamic and complex process
that involves the coordinated interaction of multiple body systems and is divided
into two main phases: the stance phase and the swing phase, critical events that
ensure stability, balance, and energy efficiency in the movement of people.

Gait problems in individuals are conditions that decrease the ability to walk
normally and smoothly [27]. Gait pathologies, which refer to deviations from the
normal pattern of locomotion, result from various neurological, musculoskeletal,
and other disorders. According to Perry[26], these pathologies can be classified
into several types, such as antalgic gait, Trendelenburg gait, hemiplegic gait,
spastic gait, ataxic gait, neuropathic gait, parkinsonian gait, and foot drop
gait. Kirtley emphasizes the importance of detailed and quantitative analysis
to diagnose and treat these conditions, highlighting how gait pathologies can
result from neuromuscular disorders, musculoskeletal injuries, and balance and
coordination problems [19].

The development of technology to detect gait disorders offers significant
advantages for patients, such as diagnosing with initial symptoms, continuous
monitoring, objective evaluation, personalization, and assessment of treatment
or therapy[6]. various technologies are used for gait analysis in individuals, some
of the most common being force platforms, inertial sensors, electromyography,
videography and image analysis, motion capture systems, and pressure insoles.
The information from these systems is used in clinical research, evaluation,
and analysis settings, allowing for the identification of abnormal patterns,
performance assessment, and the design of rehabilitation interventions [9, 3, 11].

In gait analysis research, several studies have used innovative techniques
with sensors and machine learning methods. Ionescu and Moga [17] present a
gait recognition approach based on multiple projections and machine learning
algorithms, highlighting the improvement in accuracy by combining different
projections. Panwar and Gupta [25] review various gait recognition techniques
using the Kinect sensor, discussing their effectiveness and challenges in capturing
and analyzing gait data. Wang, Tan, Ning, and Hu [30] propose a gait recognition
method based on silhouette analysis, applying machine learning algorithms for
human identification. Chen, Jafari, and Kehtarnavaz [10] explore the fusion of
depth and inertial sensor data for human action recognition, including gait,
highlighting the improvement in recognition accuracy. Eskofier [13] discusses
recent advances in the use of deep learning for sensor-based mobility analysis,
emphasizing the integration of multimodal data for fall risk assessment. Zhang
and Tao [33] introduce slow feature analysis for human action recognition,
applicable to detailed gait analysis and capturing movement dynamics. These
studies demonstrate the potential of multimodal technologies and machine
learning to transform the analysis and evaluation of human gait.

The proposal in this work aims to achieve significant advantages over
traditional approaches by integrating multiple data modalities, such as video
images and inertial sensor data. This integration improves analysis accuracy
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Table 1. Studies on Human Gait.

Autor-Published Technology

Buffanti,2020 Camera RGB-D
Bijalwan,2021 IMU, Camera RGB-D
Palermo,2022 IMU, Camera RGB-D

Yamamoto,2022 IMU, Camera RGB-D
Cai,2023 IMU, Binocular Camera

Alanazi,2022 Camera RGB-D, Micro-Dopler
D’Antonio,2021 IMU, 3-WebCam
Albert,2020 Camera RGB-D

vanKersbergen,2021 Camera RGB-D

by providing a more comprehensive and detailed representation of human gait,
mitigating individual errors from each sensor or modality. The combination of
features captured by different sensors enables the detection of patterns to adapt
to various conditions and environments. Altogether, the multimodal approach
will capture subtle movement patterns and offer model adaptability in clinical,
sports, and rehabilitation applications.

2 Background

2.1 Human Gait Parameters

Gait parameters are defined as quantitative measures used to describe and
analyze human movement during locomotion. These parameters include
kinematic, kinetic, and temporal variables that provide detailed information
on how a person moves. Kinematic data describe the position and movement
of joints and body segments in three-dimensional space during gait. This
includes joint angles, range of motion, and movement patterns of each joint.
Kinetic parameters quantify the forces and moments applied through the joints
during ground contact, evaluating ground reaction forces, load distribution,
and joint moments.

Finally, temporal parameters describe the duration of specific gait phases,
such as stance time and swing time, providing information on the sequence and
coordination of movement. These parameters are fundamental for understanding
both normal gait and pathological alterations, allowing for a detailed analysis
that guides the diagnosis and treatment of clinical conditions related to
gait[19, 26]. Table 1 shows a summary of works related to gait analysis and
the technology used.

Buffanti et al. demonstrate that non-invasive and cost-effective systems based
on depth cameras can recover relevant features of human gait patterns. Gait
data recordings were taken using multiple depth sensors. Time-domain analysis
includes joint excursions across gait phases, range of motion (ROM), measures
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of central tendency and dispersion, spatial variables, and center of mass (COM)
position. Spectral analysis examines dominant frequency, magnitude, and phase
shift during gait. Only features showing significant gender differences were used
to train a Support Vector Machine (SVM) classifier [16].

Bijalwan et al. work on the biomechanics of pelvic, hip, knee, and ankle
joint movements using a Kinect sensor and an inertial measurement unit (IMU)
during normal walking. They present a cost-effective gait analysis system based
on Microsoft Kinect v2 and an IMU device. The Kinect sensor is used to acquire
3D skeleton data (camera (x, y, z), depth (x, y), orientation (x, y, z, w), color
(x, y)) with 25 human body joints. For their analysis, they consider lower limb
joints, namely the spine joint, hip, knee, and ankle of both left and right legs [5].

Palermo et al. collect a multi-camera and multimodal dataset from patients
walking with a robotic walker equipped with wheels and a pair of cameras.
Depth data were acquired at 30 fps and synchronized with inertial data from
Xsens MTw Awinda sensors and kinematic data from Xsens biomechanical model
segments, acquired at 60 Hz [24].

Yamamoto et al. demonstrate the capability of markerless gait analysis using
posture estimation based on a single RGB camera via OpenPose (OP) and an
inertial measurement unit (IMU) on the foot segment to measure ankle joint
kinematics under various walking conditions. Their proposed method has the
potential to measure spatiotemporal gait parameters and lower limb joint angles,
including ankle angles, as an assessment tool for gait in clinical environments [31].

Cai et al. present a procedure for joint angle estimation assisted by binocular
camera to acquire initial orientations of the lower limb segment using a human
pose estimation algorithm based on images and then estimate joint angle with
kinematic constraint. The alignment procedure requires only a sitting posture
and does not need any functional movement. Ten healthy participants were
recruited for validation experiments, including standing up, turning around, and
walking. The accuracy and efficiency of their alignment procedure were validated
against optical motion capture (OMC) [7].

Alanazi et al. propose the use of millimeter-wave (MMW) radar as a
promising solution for gait applications due to its low cost, improved privacy,
and resilience to ambient light and weather conditions. They present a novel
method of human gait analysis that combines micro-Doppler spectrogram and
skeletal posture estimation using MMW radar, complemented by 3D coordinates
extracted from 25 joints via Kinect V2 sensor [1].

D’Antonio et al. characterize the performance of a low-cost markerless
system, consisting of the open-source OpenPose library, two web cameras, and
a linear triangulation algorithm. The system was validated in terms of 3D gait
kinematic analysis, compared with inertial sensors. They recorded synchronized
videos of six healthy subjects in three webcam configurations, in walking
and running sessions on a treadmill. They also compared sagittal joint angles
between the two systems to assess the kinematic performance of the markerless
system [12].
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Albert et al. evaluate the motion tracking performance of the latest
generation Microsoft Kinect camera, Azure Kinect, compared to its predecessor
Kinect v2 in treadmill walking using a reference multicamera motion capture
system Vicon and the Plug-in Gait model with 39 markers. Five young and
healthy subjects walked on a treadmill at three different speeds while data
were simultaneously recorded with all three camera systems. They used an
easy-to-manage camera calibration method developed here to spatially align 3D
skeleton data from both Kinect cameras and the Vicon system [2].

Van Kersbergen et al. studied the use of a depth camera to capture changes
in the gait characteristics of Parkinson’s patients. The dataset consisted of
19 patients (tested in both defined OFF and ON phases) and 8 controls,
performing the ”Timed-Up-and-Go” test multiple times while being recorded
with the Microsoft Kinect V2 sensor. Derived features from the camera were
step length, average walking speed, and mediolateral sway. Motor signs were
clinically assessed using the Unified Parkinson’s Disease Rating Scale by the
Movement Disorder Society [18].

2.2 IMU Systems

Inertial systems are advanced technologies used to accurately capture and
analyze parameters of gait and other human movements. These systems rely
on sensors that measure linear acceleration and angular velocity of body
segments. A typical architecture of an inertial system includes multiple sensors
strategically distributed on the body, connected to a central processing unit
that records and processes the data. Inertial sensors are small and lightweight,
allowing comfortable and unrestricted data capture during gait. These systems
provide precise measurements of kinematic parameters such as joint angles and
movement trajectories, as well as temporal parameters like cadence, step length,
and stance and swing times. This capability makes inertial sensors versatile
tools in clinical settings for evaluating musculoskeletal disorders and in sports
applications for performance analysis and functional biomechanics [28].

The optimal placement of inertial sensors for gait parameter recording
depends on the biomechanical factors of human gait and joint movement, which
affect the accuracy and reliability of collected data. Generally, it is recommended
to mount sensors on body segments that undergo significant movements during
gait, such as thighs, shins, and feet (Fig. 1). For example, placing sensors on
the lumbar region or legs allows for direct capture of relevant joint angles and
movement patterns. Moreover, precise placement at specific anatomical points,
such as the anterior superior iliac spine for the pelvis or the knee center for knee
joint flexion, ensures more accurate measurements of kinematic parameters. This
strategy not only facilitates detailed assessment of gait biomechanics but also
minimizes the risk of external interferences and motion artifacts, thus ensuring
data quality for clinical analysis and sports applications [8].
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Fig. 1. Proposed placement of inertial sensors.

2.3 Camera with Depth

The use of RGB-D depth cameras, such as the Microsoft Kinect system,
has revolutionized gait analysis by providing three-dimensional data capture
that combines RGB sensors with depth sensors. This technology is known
for its ease of use, minimal invasiveness, and cost-effectiveness, making it
accessible in both clinical and research settings. Depth cameras allow for precise
evaluation of kinematic and kinetic parameters without needing body-worn
markers, thereby enhancing subject comfort. Their application in biomechanical
research and rehabilitation has been extensively documented, highlighting their
advantages and limitations compared to traditional motion capture systems.
While they present challenges such as limited accuracy and dependence on
lighting conditions, depth cameras offer a valuable tool for detailed and accessible
analysis of human gait [29].

Proper placement of the capture system is crucial for obtaining accurate and
reliable gait analysis data. The camera’s location and angle determine the quality
and precision of the measured kinematic and kinetic parameters. To achieve
optimal motion capture, the camera should be positioned at an appropriate
height and distance from the subject, typically at waist height and approximately
2-3 meters away (Fig.2). This positioning ensures that the subject’s entire
body is within the camera’s field of view throughout the complete gait cycle.
Additionally, adjusting the camera’s tilt angle is important to maximize the
visibility of body segments and minimize marker occlusion [14].

3 Datasets

In the context of gait analysis, the use of established databases such as
GaitRec, MotionSense, and the CMU Graphics Lab Database is fundamental
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Fig. 2. Proposal for camera placement.

to ensure the validity and reliability of the obtained results. These databases
have been collected with rigorous methodologies and have been widely used in
the scientific literature, allowing direct comparison of results and validation of
new analysis approaches. Furthermore, access to a wide variety of data allows for
the consideration of multiple variables and a more comprehensive and detailed
analysis of gait patterns. By basing the use of these databases, transparency and
reproducibility of the research are guaranteed[19, 26, 21].

Using established databases in gait analysis is essential to ensure the
validity and reliability of the obtained results. Table 2 shows a brief description
of databases such as GaitRec[20], MotionSense[22], CMU Graphics Lab
Database[15], OU-ISIR Gait Database[21], and CASIA Gait Database [32],
allowing direct comparison of results and validation of new analysis approaches.
Additionally, access to a wide variety of data allows for the consideration of
multiple variables and a more comprehensive and detailed analysis of gait
patterns. By basing the use of these databases, transparency and reproducibility
of the research are guaranteed.

4 Multimodal Machine Learning

Multimodal machine learning refers to the ability of models to process and
relate multiple modalities from sensors, images, text, audio, and video. This
field focuses on building models that can jointly interpret multimodal signals,
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Table 2. Data base gait parameters.

Data base Description Adquisition Subjets

GaitRec[20] Data for the evaluation of
gait recognition algorithms.
Includes multiple subjects and
conditions

Inertial sensors,
RGB-D cameras

744

MotionSense[22] Data from mobile sensors
for real-time analysis of IoT
systems, including gait data
captured by wearable devices.

Accelerometers
and gyroscopes
in smartphones

24

CMU Graphics
Lab Motion
Capture
Database[15]

Motion capture database that
includes various activities,
including gait, collected with
high-speed cameras.

Motion capture
cameras

25

OU-ISIR Gait
Database[21]

Treadmill gait dataset, captured
under multiple conditions and
with different subjects.

Video cameras 34

CASIA Gait
Database[32]

Gait recognition database,
which includes multiple views
and recording conditions.

Video cameras 124

leveraging available data to enhance understanding and performance across
various tasks. Characteristics of multimodal learning include integrating data
from different sources, the ability to learn joint representations, and the
capability to translate and align information across modalities [4]. Among
the advantages of multimodal machine learning are increased robustness
and accuracy in pattern recognition and classification, as well as improved
capability to capture complex contexts and nuances that would be challenging
to understand from a single modality [23].

The proposal presented in this work adopts a multimodal system for
gait analysis that integrates data from multiple sensory sources such as
RGB cameras, depth cameras, and inertial sensors, enabling precise and
comprehensive three-dimensional motion capture. This integration enhances
the analysis by providing combined kinematic and kinetic data, allowing for
a deep understanding of gait and its disorders. It highlights the potential of
multimodal systems to significantly improve the understanding and treatment
of gait disorders.

4.1 Multimodal Gait Parameters

The identification of parameters is essential for understanding and evaluating
specific aspects of human gait, considering that they come from the combination
of inertial sensors and depth cameras. Table 3 groups the parameters that can
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Table 3. Multimodal Machine Learning comparison.

Parameter RGB-D
Cameras

Inertial
Sensors

Common
References

Position and joint angles Yes No [20][21][32]

Speed and acceleration of movement Yes Yes [20][21][32][22]

Body segment trajectories Yes No [20][21][32]

Distances and step lengths Yes No [20][21][32]

Area of movement Yes No [20][21][32]

Detection of joint points Yes No [20][21][32]

Linear and angular acceleration No Yes [22]

Angular velocity No Yes [22]

Orientation and posture No Yes [22]

Step frequency No Yes [22]

Duration of gait phases No Yes [22]

Variability in movement patterns No Yes [22]

be identified by each of the technologies used, facilitating the analysis and
understanding of gait movement.

When using inertial sensors to record accelerations and rotations during gait
analysis, various features can be extracted that are crucial for understanding
and evaluating human movement. These features not only provide a quantitative
description of movement during gait but can also serve as inputs for machine
learning algorithms aimed at identifying specific patterns, recognizing anomalies,
or classifying different gait conditions. The appropriate selection of these features
depends on the study or clinical application’s objectives and the type of
biomechanical analysis desired.

RGB and depth camera systems are known for their ability to capture
three-dimensional data using structured light technology, making them useful
for gait analysis and other human motion studies.

Table 3 provides a clear and concise comparison of the features recorded
by RGB-D cameras and inertial sensors in gait analysis. By identifying the
overlaps and differences in the parameters measured by both technologies, the
selection of appropriate tools for specific human gait studies is facilitated. This
comparison also highlights the complementarity of both technologies, suggesting
that a multimodal integration can offer a more comprehensive and accurate view
of gait analysis, improving the detection and treatment of pathologies.

4.2 Machine Learning Algorithms

Studying the algorithms used in gait analysis is crucial for several reasons.
Firstly, different algorithms may offer varying levels of precision and efficiency,
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Table 4. Multimodal Machine Learning Algorithms.

Reference Algorithm Features Evaluation
Metric (%)

Database

Perry, J., &
Burnfield, J.
M. (2010)

SVM Temporal and spatial
gait analysis

85%- accuracy GaitRec

Kirtley, C.
(2006)

Random Forest Acceleration and
gyroscope features

88%- accuracy Daphnet

Umphred, D.
A., et al.
(2013)

CNN Images and depth
sequences

90%-
specificity

Murooka

O’Sullivan, S.
B., et al.
(2019)

Decision Trees Frequency and time
parameters

82%- accuracy GaitRec

Buczek Jr., F.
L., et al.
(Year)

LSTM Temporal movement
sequences

87%-
perplexity-
accuracy

Daphnet

Webster, J., &
Murphy, D.
(2018)

KNN Joint angle analysis 80%- log loss Murooka

Journal of
Biomechanics

Naive Bayes Kinematic
parameters

83%- recall-
accuracy

GaitRec

Journal of
Biomechanical
Engineering

AdaBoost Combination of
temporal and spatial
features

89%-F1Score Daphnet

allowing the selection of the most suitable algorithm for specific study or
application needs. Additionally, some algorithms are better suited for integrating
and analyzing data from multiple sources, such as inertial sensors and RGB-D
cameras, optimizing multimodal analysis. Advanced algorithms, such as neural
networks and machine learning models, can identify complex patterns in gait
data that may not be detectable using traditional methods, which is essential
for the diagnosis and treatment of gait pathologies. In clinical settings, choosing
the correct algorithm can significantly improve the diagnosis, monitoring,
and treatment of patients, providing more reliable and replicable results.
Understanding the algorithms used also drives research and the development
of new technologies and methods, contributing to the advancement of the field.

Table 4 provides a comparative overview of various studies employing
machine learning algorithms for gait pathology detection, highlighting their
importance in validation and methodology comparison. The cited references
ensure the validity of the results, while the diversity of algorithms such as SVM,
Random Forest, and CNN, demonstrates the breadth of applicable approaches.
The utilized features, including temporal and spatial analysis, acceleration
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Fig. 3. Proposed architecture.

and gyroscope data, images, and depth sequences, are crucial for capturing
relevant signals. The accuracy evaluation, ranging from 80% to 90%, allows
for comparison of approach effectiveness. Additionally, databases like GaitRec,
Daphnet, and Murooka ensure result validity and generalizability.

4.3 Proposed Approach

The proposed methodology for the multimodal integration of inertial sensors
and RGB-D cameras is shown in Fig.3, where a detailed structure for gait
analysis is presented. This approach utilizes technologies common to the
previously reviewed works, supplemented with preprocessing techniques and
machine learning algorithms. The multimodal approach allows for a deep
understanding of gait patterns and facilitates the identification of pathologies
in human locomotion.

The first step in the gait analysis methodology is to develop an appropriate
testing environment. This environment must be controlled and standardized to
ensure consistent and reproducible testing conditions. A sufficiently large and
flat area should be selected to allow for natural walking, with specific distances
marked for participants to walk. It’s important to consider lighting and the
absence of obstacles that could interfere with walking.

The selection of data collection instruments is crucial for obtaining accurate
and useful measurements. In this methodology, inertial measurement units
(IMUs) and RGB-D cameras will be used. IMUs are useful for measuring
accelerations and rotations, while RGB-D cameras capture images and
depth data, providing detailed information about body movement and
position in space.
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Proper sensor placement is essential for obtaining accurate data. IMUs should
be placed at key points on the body such as ankles, knees, hips, and the lower
back to capture limb and trunk movement. RGB-D cameras should be positioned
around the testing environment to cover multiple angles and ensure that the
entire gait sequence is captured without obstructions. Ideal placement is typically
at mid-height and at the ends of the walking area to maximize coverage and data
depth accuracy.

Once sensors are placed, data acquisition proceeds. Participants walk
along the testing environment while IMUs and RGB-D cameras record their
movements. It’s important to conduct multiple trials for each participant
to obtain a robust dataset and better represent natural variations in
gait. Data should be properly stored and labeled to facilitate subsequent
processing and analysis.

Data preprocessing is a critical step to ensure that the obtained data are
of high quality and suitable for analysis. This process includes cleaning data
to remove noise, synchronizing data between different sensors, and normalizing
data to adjust for differences in measurement scale. Data can also be segmented
into individual gait cycles to facilitate specific analysis of each phase of gait.

Once preprocessed, the data are analyzed to extract relevant features.
Temporal features include parameters such as gait cycle duration and individual
phases (stance and swing). Spatial features include measures such as step length,
step width, and pelvic tilt. Frequency-domain features are obtained through
spectral analysis, identifying dominant frequencies in motion signals that may
be related to specific gait patterns or pathologies.

The final step is the application of multimodal classification algorithms
to analyze the extracted features and classify gait patterns. Machine learning
algorithms such as Support Vector Machines (SVM), Random Forest, and neural
networks (e.g., LSTM for temporal data) are trained using features extracted
from IMU and RGB-D data. These algorithms can identify and classify different
types of gait, including normal and pathological patterns, enabling precise and
detailed assessment of participants’ gait.

5 Conclusions

In the study of human gait, technologies such as inertial sensors and Kinect
cameras have been used, and various methodologies and applications in
machine learning and biomechanics have been explored. It has been reviewed
how inertial sensors capture acceleration and gyroscope data, which are
crucial for analyzing parameters such as speed, cadence, and abnormal gait
movement patterns. On the other hand, Kinect has proven useful for recording
three-dimensional joint positions, enabling a detailed analysis of human
movement kinematics and dynamics.

In terms of machine learning algorithms, the potential of Convolutional
Neural Networks (CNNs) to process images captured by Kinect has been noted,
as well as Recurrent Neural Networks (RNNs) for modeling the temporal
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dynamics of inertial sensor data. Multimodal neural networks and other methods
like Support Vector Machines (SVMs) have been considered to integrate and
classify data from multiple sources.

Finally, it is envisaged how these technologies and methodologies can
significantly contribute to medical diagnosis, rehabilitation, and diagnostic
improvement, providing the capability to predict the onset of gait problems
in individuals.
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